Handling phrase reorderings for machine translation
نویسندگان
چکیده
We propose a distance phrase reordering model (DPR) for statistical machine translation (SMT), where the aim is to capture phrase reorderings using a structure learning framework. On both the reordering classification and a Chinese-to-English translation task, we show improved performance over a baseline SMT system.
منابع مشابه
A joint translation model with integrated reordering
This dissertation aims at combining the benefits and to remedy the flaws of the two popular frameworks in statistical machine translation, namely Phrasebased MT and N-gram-based MT. Phrase-based MT advanced the state-of-the art towards translating phrases3 than words. By memorizing phrases, phrasal MT, is able to learn local reorderings, and handling of other local dependencies such as insertio...
متن کاملLearning Phrase Boundaries for Hierarchical Phrase-based Translation
Hierarchical phrase-based models provide a powerful mechanism to capture non-local phrase reorderings for statistical machine translation (SMT). However, many phrase reorderings are arbitrary because the models are weak on determining phrase boundaries for patternmatching. This paper presents a novel approach to learn phrase boundaries directly from word-aligned corpus without using any syntact...
متن کاملModified Distortion Matrices for Phrase-Based Statistical Machine Translation
This paper presents a novel method to suggest long word reorderings to a phrase-based SMT decoder. We address language pairs where long reordering concentrates on few patterns, and use fuzzy chunk-based rules to predict likely reorderings for these phenomena. Then we use reordered n-gram LMs to rank the resulting permutations and select the n-best for translation. Finally we encode these reorde...
متن کاملReordering Constraints for Phrase-Based Statistical Machine Translation
In statistical machine translation, the generation of a translation hypothesis is computationally expensive. If arbitrary reorderings are permitted, the search problem is NP-hard. On the other hand, if we restrict the possible reorderings in an appropriate way, we obtain a polynomial-time search algorithm. We investigate different reordering constraints for phrase-based statistical machine tran...
متن کاملLearning Word Reorderings for Hierarchical Phrase-based Statistical Machine Translation
Statistical models for reordering source words have been used to enhance the hierarchical phrase-based statistical machine translation system. Existing word reordering models learn the reordering for any two source words in a sentence or only for two continuous words. This paper proposes a series of separate sub-models to learn reorderings for word pairs with different distances. Our experiment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009